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Abstract 

We present direct solvers for band matrix systems for processor ensembles configured as 2-dimensional 

meshes with end-around connections, binary trees, shuffle-exchange, perfect shuffle and boolean cube 

networks, and as clusters of processors with intracluster connections forming a torus or a boolean cube 

and intercluster connections forming binary trees, shuffle-exchange, perfect shuffle and boolean cube 

networks. The ensembles are assumed to be of the MIMD type, and each processor is equipped with 

substantial local storage. There is no shared storage, and the control is distributed. The band matrix 

system solvers are based on (block) Gaussian elimination, (block) cyclic reduction, or a combination 

thereof to yield algorithms for banded systems of a minimum complexity 0(m+mlog2(N/m)) with mN 

processors for systems of N equations and bandwidth 2m+l. The banded systems solvers treat the band 

as being dense. 

1. Introduction 
Multiprocessor systems with a hundred microprocessors or more are commercially available, and systems 

with thousands or tens of thousands of processors will become available in the immediate future. A 

substantially larger number of processors is expected to be both economically and technologically feasible 

in a computer system within a decade. Fine grain parallelism becomes a possibility even for computations 

on substantial data sets, and data sets with extensive operations. With a decreasing granularity of 

computations the interprocessor communication increases in importance, since the complexity of many 

computations are superlinear in the data sets. For instance, the common matrix multiplication 

algorithms require order OtN3) operations for order O(N') data elements. The Fast Fourier Transform 

requires order 0(logoN) operations per point, and many sorting algorithms require at least the same order 

of operations per data element. The most well known, and until recently also the most efficent parallel 

sorting algorithm, bitonic sort [2], requires O(log^N) operations per data element. 

Several candidate  architectures with  different characteristics with  respect  to  performance,  ease of 

programming, scalability with respect to the number of nodes in the system, and scalability with respect 



to the technology are currently being investigated. In a much simplified categorization the multiprocessor 

systems can be considered as switch based systems, direct processor-to-processor connected systems, or 

hierarchical systems having elements of both these architectures, such as the CEDAR project [25]. 

Examples of highly concurrent switch based systems are the NYU Ultracomputer [33] [10], and the TRAC 

[36], and examples of processor-to-processor connected systems are the Caltech Cosmic Cube [35] (and its 

commercial successor, the INTEL iPSC), the Connection Machine [13], the Caltech Tree Machine [3], and 

the Columbia NON-VON computer [37], [38]. The ChiP machine [39] is a hybrid between the first two 

kinds of systems. It has switching elements inserted in the processor-to-processor connections and thereby 

achieves reconfigurability. AU the systems mentioned are of the MIMD (Multiple Instruction streams 

Multiple Data streams) type [7], with the exception of the NON-VON machine which is of the SIMD 

(Single Instruction stream Multiple Data streams) type. 

For our algorithms we assume that the machines are of the MIMD type. We also assume that the 

processors are directly interconnected to form a network of processors. The MIMD architectures offers 

greater flexibility than SIMD architectures and avoids the potential bottleneck and source of limited 

scalability that a global controller represents, at the expense of possible code duplication and additional 

hardware. We refer to highly concurrent systems in which processors have their own local storage and 

instruction streams as ensemble architectures. Ensembles of processors directly interconnected to form a 

network makes the time to access data non-uniform. To take full advantage of such an architecture it is 

important to exploit the locality that exists in many computations. In VLSI technology the access time to 

various parts of a system is indeed non-uniform [34] [28], and processor-to-processor interconnected 

ensembles reflect this property at a higher level. In switch based systems with processors on one side of 

the switch and storage modules on the other the access time is the same from any processor to any 

storage module. In the case of an fl-network the number of routing steps for any processor to processor 

communication is the same as the maximum routing distance in a boolean cube configured ensemble with 

the same number of processors. 

In this paper we assume that processors are directly interconnected to each other in a sparse and regular 

manner, and that the architecture is of the MIMD type. These architectures have the potential for 

exploiting the locality of computations. We focus on the mapping of the computations for the solution of 

banded systems of equations on to a few prototype ensemble architectures such that the locality of the 

computations is preserved in order to achieve a low communication (and computational) complexity. 

Several parallel algorithms for the solution of dense banded systems of equations have been proposed 

during the last decade and a half. We review recent results, which cannot be presented in detail due to 

space limitations. The ensemble configurations considered in this paper are: linear arrays, tori, binary 

trees, shuffle-exchange, perfect shuffle, and boolean cube networks. 



For the description of the algorithms we often refer to the graph model of elimination methods 

introduced by Parter [29]. The graph of an N by N matrix has N vertices and a directed edge for each 

nonzero matrix element. The elimination of each vertex requires only a few operations, some of which are 

independent. The removal of a directed edge can be considered as a primitive operation. Hence, the 

elimination of a vertex in a tridiagonal system involves only two primitive operations, and the main 

source of concurrency is the independence of primitive operations for the elimination of independent 

vertices [15]. As a matrix becomes denser (increased fanout of nodes) the potential concurrency in the 

elimination of a single vertex increases, and conversely the number of vertices that can be eliminated 

concurrently decreases. 

We first study cyclic reduction on ensemble architectures. The cyclic reduction algorithm concurrently 

performs primitive operations for the elimination of different vertices. We then consider parallel 

algorithms that for arbitrary banded systems concurrently eliminate multiple vertices in a partially 

predetermined order, including algorithms such as parallel block cyclic reduction. This algorithm 

concurrently performs primitive operations for the elimination of different vertices, and sequentially 

performs primitive operations for the elimination of a single vertex (precisely as parallel cyclic reduction). 

Modified systolic algorithms for ensemble architectures are described next. This class of algorithms 

concurrently performs primitive operations for the elimination of a single vertex. This form of 

concurrency is very limited for a tridiagonal system, but is the only form of concurrency in elimination 

methods for dense matrices. Finally a fast banded systems solver is presented. It concurrently performs 

primitive operations both for the elimination of a single vertex and for multiple vertices. 

2. Tridiagonal system solvers 
The solution of an Irreducible tridiagonal system of N equations and R right hand sides, AX=Y, can be 

performed in 21og^N steps by odd-even cyclic reduction [4] or recursive doubling [24] [40]. For a 

comparison of the arithmetic complexity of the two methods see Stone [41]. Hockney [14] presents a 

modified version of cyclic reduction that solves a tridiagonal system in log„N arithmetic steps, at the 

expense of performing a total of Nlog„N operations (instead of N). Wang [42] has studied the solution of 

tridiagonal systems in the context of vector machines. Wang partitions the equations into subsets, applies 

a variation of Gauss-Jordan elimination to each subset independently, and solves a reduced tridiagonal 

system having a number of equations that is equal to the number of partitions. The reduced system is 

also solved by Gaussian elimination. The communication and arithmetic complexity of cyclic reduction 

and partitioning methods for the solution of tridiagonal systems of N equations on K processor ensembles, 

N > K, are analyzed by Gannon and vanRosendale [8] and Johnsson [20]. Ensemble configurations 

treated in the latter reference are linear arrays, 2-dimensionaI meshes, binary trees, shuffle-exchange, 

perfect shuffle and boolean cube networks.   The algorithms have distributed control. 



In order that the asymptotic execution time on an ensemble architecture of N nodes be of order 

OOogjN) it is necessary that the mapping of data and computations on to the nodes of the ensemble can 

be done such that the communication complexity is of order 0(log„N). This fact excludes linear arrays 

and 2-dimensional meshes as candidate configurations [fl], since their diameter is N and 2\/N respectively, 

and at least one global communication is necessary. The diameter of a binary tree is 2(log„N-l), of a 

shuffle-exchange network alogjN-l, and of a boolean cube log2N. Nodes in a shuffle-exchange network 

can be labeled such that every even node is connected to the-following odd node (exchange edges), and a 

node with address obtained by a one step cyclic shift of another node's address is connected to that node 

(shuffle edges).  In a boolean cube, nodes with addresses that difTer in precisely one bit are interconnected. 

•     • •     • •     • »     • Y     y     v     V 

/iViVivvtviviv/i\ 
1"      2"       3"      ft"       5"       4°       7"       8"       9"     10"     U"     12"     13"     14"     15' 

Figure 2-1:    A computation graph for odd-even cyclic reduction 

For the mapping of odd-even cyclic reduction on to ensemble nodes we start with its computation 

graph, Figure 2-1. An inorder mapping of equations to nodes in a complete binary tree of matching size 

yields a complexity of the desired order [22] [8]. A binary tree can be embedded in a shuffle-exchange 

network such that proximity is preserved. One such embedding is obtained by labeling the nodes of the 

binary tree in breadth-first order, and identifying nodes so labeled with nodes in the shuffle-exchange 

network. For the boolean cube an algorithm with distributed control and a communication complexity of 

order OUogjN) can be devised by embedding the equations in the cube according to a binary-reflected 

Gray code [30]. With such an embedding only 2 routing steps are required for each reduction step. 

Furthermore, each node can locally determine with which node to exchange what information from 

knowledge of its own address and the reduction step being processed [20]. Successive reduction steps can 

be performed in successively lower dimensional subcubes by properly performed local exchanges, as 

indicated in Figure 2-2.  Each reduction step involves only nearest neighbor communication. 

One equation per node is not a very realistic assumption for a large system of equations. For a binary 

tree one may attempt to perform the mapping in two stages; first on to an abstract binary tree of 

matching size, and then onto the processor tree by folding the abstract tree on to itself a number of times. 

Such a mapping yields a poor distribution of the computations [20].    The root receives twice as many 
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Figure 2-2: Odd-even cyclic reduction on a boolean cube 

equations as the other nodes. Moreover, half of the tree nodes become inactive after the first reduction 

step, a quarter after the second, and so on. Partitioning the sets of equations into P subsets of 

consecutively indexed equations, or one-dimensional domain decomposition, and mapping subsets in 

inorder to the P processor tree yields a better result, but the communication complexity is of order 

0((log2(N/P))log2P+log2P), which for N/P>1 can be reduced to the order 0(log2(N/P)+log^P) by using 

a proximity preserving loop embedding [32]. 

Combining a proximity preserving mapping for the first log2(N/P) steps followed by an inorder 

mapping for the last logjP reduction steps reduces the complexity to order 0(log2N), since the conversion 

between the two mappings can be carried out in log.P-3 steps [20]. This is the minimum order possible 

for cyclic reduction, but not the minimum possible for the solution of a tridiagonal system on a P 

processor ensemble. The lower bound for the communication complexity is of order C^log^) for an 

ensemble having a diameter proportional to log^. Partitioning the set of equations into subsets of 

consecutively indexed equations, mapping the subsets to processors in inorder, and employing Gaussian 

elimination in each partition concurrently, followed by cyclic reduction for the reduced system yields an 

algorithm with a communication complexity of minimum order [20] [8]. 

For the boolean cube the embedding problem is much simplified, since all required data interactions can 

be accomplished with at most 2 routing steps with a (fixed) Gray code embedding of subsets [20]. 

On a linear array cyclic reduction may be of a lower complexity than Gaussian elimination [20]. Both 

methods are linear in the number of processors in the array, Gaussian elimination because it is inherently 

sequential and cyclic reduction because of the limited communication capability of the linear array. If the 

overhead in communication and arithmetic operations is ignored, cyclic reduction is of a lower 

computational complexity than Gaussian elimination if the communication and arithmetic bandwidths are 

the same. Conversely, if the arithmetic bandwidth is an order of magnitude higher than the 

communication bandwidth, then Gaussian elimination is of a lower complexity. Both these results hold 

independent of the number of right hand sides and the size of the linear array.  For intermediate ratios of 



the communication and arithmetic bandwidths the method of lowest complexity depends on the number 

of right hand sides and the size of the array and the number of equations. 

For multiple right hand sides it is in most cases preferable to partition the ensemble into subensembles, 

such that there is one right hand side per ensemble. The communication complexity decreases without a 

corresponding increase in the arithmetic complexity [20]. 

Truncation of the reduction process in a maximally concurrent implementation offers a reduction in the 

computational complexity that is proportional to the extent of the truncation. Hence, truncating the 

reduction process results in a much more significant reduction in computational complexity than in a 

sequential implementation, since half of the arithmetic operations are incurred in the first reduction step, 

a quarter in the second, etc. 

3. Concurrent elimination of multiple vertices 
Lawrie and Sameh [27] suggest that the system of equations of bandwidth 2nn-l. (a.=0 for |i-j| > m) 

be partitioned into P subsets of consecutively indexed equations, and that in principle Gauss-Jordan 

elimination be performed concurrently in all partitions. No interpartition communication is required for 

this phase of the computations. For symmetric matrices a factorization method taking advantage of 

symmetry may be used in conjunction with linear recurrence solvers. In order that the partitioned system 

be block tridiagonal P is constrained by the relation P < fN/m"). 
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After this first phase, which concurrently eliminates as many vertices as there are partitions (given one 

processor per partition), a block pentadiagonal system of am(P-i) equations can be separated out from 

the system, and solved in a second phase [27]. The remaining variables are obtained through 

backsubstitution in a third phase. The second phase requires interpartition communication, whereas the 

third phase is local to a partition. By allowing communication between adjacent partitions for the 

backward elimination on the last m equations in each partition it is possible to arrive at a block 

tridiagonal system of mP equations, instead of the block pentadiagonal system, in the same number of 

arithmetic operations [21].   The structure of the system after phase l is: 
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The choice of method with respect to computational complexity for the solution of the reduced block 

tridiagonal system depends on the ensemble configuration and the ratio of the communication and 

arithmetic bandwidths. The communication and arithmetic complexity for the solution of the reduced 

system by Gaussian elimination on a linear array is analyzed by Lawrie and Sameh [27]. Dongarra and 

Sameh [5] investigate the computational complexity of the solution of the reduced system by block Jacobi 

iterations and preconditioned conjugate gradient methods. In [21] we show that even on a linear array 

the complexity of block cyclic reduction for the reduced system is lower than that of Gaussian elimination 

under a variety of conditions. The block size at which cyclic reduction is of a lower complexity than 

Gaussian elimination decreases with the number of systems to be solved, and a decreasing ratio of the 

communication and arithmetic bandwidths. For instance, with a ratio of 1, block cyclic reduction is of a 

lower complexity for all array sizes and matrix bandwidths. With the communication bandwidth 2 orders 

of magnitude lower than the arithmetic bandwidth, block cyclic reduction becomes of a lower complexity 

for a matrix bandwidth of about 60 and an array size of about 128 - 256 nodes for 1 right hand side. For 

10 right hand sides block cyclic reduction is of a lower complexity than block Gaussian elimination, if the 

matrix bandwidth is larger than about 50 and the array has more than 64 - 128 nodes. 

For ensembles configured as binary trees, shuffle-exchange, perfect shuffle and boolean cube networks, 

block cyclic reduction can take advantage of the reduced diameter of these networks. The complexity of 

the partitioning method for a symmetric matrix A is 7m N/P+(/3m+7a)m log„P where a is the ratio 

between the arithmetic and the communication bandwidths, and ß is 26/3 for a boolean cube and 76/3 

for a binary tree. The value of 7 is 3 for a boolean cube, and 2 for a binary tree. The minimum 

complexity is of order 0(m +m log„(N/m)) for the binary tree and boolean cube networks and the 

corresponding number of processors is SN/ia with S < 0.81. For Gaussian elimination on a linear array 

the minimum complexity is of the order 0(m"vNm) and the corresponding number of processors is of 

order 0(\/N/m) [27]. 

The maximum speed-up is of order 0(vN/m) for a linear array, and of order 0(N/(m+mlog„(N/m))) 

for a binary tree, shuffle-exchange, perfect shuffle and boolean cube network.   For m<N the speed-up is 



of the maximum possible order for the latter ensemble configurations, but for m«*N essentially only one 

vertex at a time can be eliminated, and the speed-up is low. 

4. Concurrent elimination of a single vertex 
Systolic algorithms for the solution of banded systems on ensembles forming 2-dimensional meshes of a 

size that matches the bandwidth are described by Kung [26] for Gaussian elimination, by Johnsson for 

Cholesky's, Crout's and Doolittle's methods [17], and for Householder's method [18]. Systolic algorithms 

for Given's method are described by Ahmed et.al. [l], Heller and Ipsen [12], and Johnsson [19]. The 

above algorithms concurrently perform all the primitive operations for the elimination of a single vertex. 

For large bandwidths an array of matching size may not be feasible. Systolic algorithms for Gaussian 

elimination on banded systems of a bandwidth exceeding the array dimensions are described by Johnsson 

[16], and for a variety of problems by Heller [11]. 

Banded system solvers of the systolic type offer a linear speed-up, but are devised for operations of a 

very fine grain (corresponding to individual matrix elements), and the bulk of the matrix is assumed to be 

stored outside the array. In an ensemble architecture the entire matrix may be stored in the ensemble, as 

well as the right hand sides and the result. For the description and the analysis of ensemble architecture 

algorithms that concurrently eliminate a single vertex it is convenient to introduce the concepts of 

operational windows and computational windows. We define an operational window to be the set of 

elementary operations that corresponds to a higher level operation and that can be performed 

concurrently. For vertex elimination algorithms we define an operational window to correspond to the 

elimination of 1 vertex. A computational window is defined by the subset of operations of an operational 

window that can be performed concurrently by the ensemble [16]. If the array size matches the 

bandwidth, then the operational and computational windows coincide. For a small array and a wide 

banded matrix the operational window is partitioned into a number of computational windows, and the 

execution time increased accordingly. We describe the data and control structures for Gaussian 

elimination in such a case in [16]. 

With the entire matrix stored within the ensemble the data movement can be reduced compared to the 

common systolic algorithms by using a dual algorithm, in which the operational window moves over the 

processor addresses and the data is stationary, instead of the converse. The algorithms that are each 

other's dual can be obtained through space-time transformations of each other. In the case where the size 

of the operational window exceeds the ensemble size, the computational windows for each operational 

window have to be ordered in time. The computations can still be carried out in a fine grain mode or be 

grouped together to create operations of a larger grain size. Such grouping only affects the complexity if 

there is an overhead in either communication or arithmetic operations that is not linear in the data. The 

order of the complexity remains unchanged. 



For ensemble configurations in the form of tori and boolean cubes it is often conceptually convenient to 

regard the matrices as being stored in a 2-dimensional array that is embedded in the ensemble. For 

ensembles configured as tori the number of nodes in each dimension of the array is taken to be the same 

as the number of nodes in the ensemble in the corresponding dimension. For ensembles configured as 

boolean cubes the address space is partitioned into halves, with half of the address space encoding column 

indices and the other half encoding the row indices of the array. A direct binary encoding can be used. 

However, we choose to use a binary-reflected Gray code [30] encoding, since such an encoding preserves 

proximity. 

The matrices A, X and Y of the system AX=Y are partitioned such that there are P partitions in each 

dimension with [N/m] < P < N. The partitioned system consists of blocks of size s by s, where s=[N/P] 

for some blocks and s=|N/Pj for other blocks, r=f(m+l)/sl, and t=[R/s]. 

•'SjO     ^NH "^Or-l X00       "  ^t-l Y00       -  Y0t-1 
^10     \l     "   Alr X10       ' ^t-l Y10       ' Ylt-1 

Ar-1 0 Ar-1 1 "   Ar-1 2r-2 
Arl    •      *      •      *   Ar2r-1 

Ar+1 2r 

A?-2P-r-3 • -^-ap-i 
■'S»-! P-r-2        ' "'S-lP-l ^-l 0    - ^TP-lt-l      YP-1 0    - YP-1 t-1 

With the entire matrix stored within the ensemble multiple matrix elements have to be identified with 

an ensemble node. We consider consecutive and cyclic storage of the matrix and the right hand sides. In 

consecutive storage all elements of a block matrix are identified, and so are blocks modulo r, i.e., array 

node (p,q)€{o,l r-l}x{o,l r-l} stores elements (i,j) of the concatenated matrix AY such that 

p=[i/3Jmodr i={0.l,...,N-l} and q=|j/sJmodr j={o,l,...,N+R-l}. The number of nodes is r2, 

1 < r < (m+1). In cyclic storage the matrix elements (i,j) are identified with node (p,q) if p=imodr, and 

q=jmodr. The number of processors is s , 1 < s < (m+1). The two storage schemes are illustrated in 

Figure 4-1. The apparent difference in granularity suggested by the two storage forms may vanish if the 

granularity of operations is optimized. 

Using Gaussian elimination the pivot row is communicated to every other row below the diagonal with a 

nonzero element in the pivot column, and the pivot column (the elements of the factors in the factored 

form of the inverse) to every other column with a higher column index, assuming that pivoting is done on 

the diagonal elements. A complexity analysis of the modified systolic algorithm yields 

am(m+R)N/K +#(m+R)N/\/K+-Km+R)/\/K +<S\/K , where the constants are multiples of the time for 
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Figure 4-1:    Consecutive and cyclic storage of a banded matrix 

an arithmetic operation or a communication action.   The multiples are small and can be found by a 

straightforward but tedious analysis [23].   For the special case in which all arithmetic operations require 

the same time as the communication of a floating-point number the high order terms of the complexity 

estimate are 3N+(m(m+2(R+l))+R+2)N/K. - 2m(m(2/3m+R+2)+R+2)/K. + ^>(m,l/\/K^) + 8«JK. 

The speed-up of the highest order term is linear and the optimum value of K is of order 0(m(mN2)1'3). 

but K. < m , i.e., K.o =»jm where rj depends on the ratio between the arithmetic and communication 

bandwidths. 

The algorithms described in this section have a linear speed-up for up to m(m-hR) processors (possibly 

2m(m+R) processors, [6]). For m «N the speed-up is good, but it is poor for small values of m. The 

speed-up characteristics are the inverse of those of the partitioning method. 

5. A fast banded system solver 
By combining an algorithm for the concurrent elimination of a single vertex with an algorithm for the 

concurrent elimination of multiple vertices an algorithm is obtained that yields a speed-up of up to order 

0(mN/(l+log2(N/m))) for ensembles configured as clusters of processors with intracluster connections 

forming tori or boolean cubes, and intercluster connections forming binary trees, shuffle-exchange, perfect 

shuffle or boolean cube networks. Hence, the speed-up is of order 0(N2) for m of order O(N), and of 

order 0(N/log,,N) for m<N, i.e., of the maximum possible order, and the same as for the tridiagonal 

system solver described previously. 

The two types of algorithms can be combined in the obvious manner, i.e., the system is partitioned for 

the concurrent elimination of multiple vertices, and each partition is assigned to a distinct cluster of 

processors. The elimination operations within each partition are carried out by an algorithm exploiting 

the potential concurrency in the elimination of a single vertex. Note that the algorithms that 

concurrently eliminate multiple vertices require more operations than the algorithms that perform the 

vertex elimination in the order defined by the banded matrix, due to fill-in.   For instance, cyclic reduction 
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requires about twice the number of operations of Gaussian elimination performed in perfect elimination 

order [31]. 

Phase 1 can be based on Gaussian elimination or a symmetric factorization method if A is symmetric. 

Phase 2 of the algorithm for the concurrent elimination of multiple vertices requires interpartition 

communication whether block Gaussian elimination or block cyclic reduction is used. For an irreducible 

system global communication is needed. For block Gaussian elimination communication in the form of a 

path is required, whereas block cyclic reduction can be mapped efficiently on to binary trees, shuffle- 

exchange, perfect shuffle and boolean cube networks [20] [23]. The communication is always between 

corresponding processors in different clusters.  Phase 3 is local to a cluster. 

From the previous sections it follows that with P clusters of K processors each, with intracluster 

connections forming a torus or a boolean cube, and intercluster connections forming a binary tree, shuffle- 

exchange, perfect shuffle, or a boolean cube the communication and arithmetic complexity is of order 

0(m(m+R)N/(PK )+m2(m+R)log„P/K ).   Clearly, the complexity is minimized if K. is maximized, i.e., 

K  corresponds to the size of an operational window.   Furthermore, the optimum value of P is of order 
c 

0(N/m), regardless of K . The optimization with respect to P and K can be performed independently. 

The speed-up is proportional to K , but sublinear in P. Hence, a boolean cube should be partitioned for 

maximum cluster size. 

For a linear array there is a complexity term linear in P. This term is entirely due to communication in 

block cyclic reduction, and is of second order in the matrix bandwidth. The term that is logarithmic in P 

is of third order in the matrix bandwidth. For Gaussian elimination there is no logarithmic term in P 

and the term linear in P is of third order in the matrix bandwidth, but has a smaller constant of 

proportionality than the corresponding arithmetic term in block cyclic reduction. Our estimates of the 

computational complexity for the solution of the banded system on a linear array using Gaussian 

elimination for the reduced system is (N/P-m)m(2m+3R)/Kc+m2(13m/3+7R/2)(P-l)/(4Ke) [23].    The 

speed-up is again linear in K .   The optimum number of clusters is of order 0(vN/m).   If block cyclic c 

reduction is used for the solution of the reduced system on the linear array, the complexity instead 

becomes  (N/P-m)m(2m+3R)/K,+m(m+R)(P-l)/K,-l-   +m2(14m/3+3R)(log2P-l)/K..      The  speed-up   is 

linear in K .   The values of m and P for which block cyclic reduction is of a lower complexity than block 
c 

Gaussian elimination depend on the ratio of the communication to arithmetic bandwidths. 
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6. Summary 
We have presented parallel algorithms for the concurrent solution of band matrix problems on ensemble 

architectures.    We have ignored numerical aspects (pivoting), which is justified for symmetric positive , 

definite matrices. The algorithms exploit potential concurrency in the elimination of a single vertex, in 

the elimination of different vertices, or both. Moreover, the algorithms are communication efficient in 

that the data and computations are mapped on to nodes in regularly configured ensembles such that 

communication is local to a very large extent. 

The speed-up of the algorithms exploiting the potential concurrency in the elimination of a single vertex 

is linear in the number of ensemble nodes for linear arrays, and 2-dimensional meshes (and boolean ' 

cubes). The complexity of the band matrix algorithms exploiting concurrency in the elimination of a 

single vertex is of order 0(m2N/K.), where K is the number of nodes in the ensemble. The speed-up for 

algorithms exploiting the potential concurrency in the elimination of multiple vertices is sublinear, indeed 

at best logarithmic in the number of ensemble nodes because of limited fan-in. For ensembles configured 

as binary trees, shuffle-exchange, perfect shuffle and boolean cube networks, the minimum complexity 

attained by the algorithms is proportional to the logarithm of the problem size, including communication l 

time. The complexity of the algorithms that exploit the concurrency both in the elimination of a single 

vertex and in the elimination of different vertices is of order 0(m2N/(PK )+m3log0P/K ). The minimum 

value of this complexity is 0(m+mlog2(N/m)) for K of order 0(m2) and P of order 0(N/m). The only 

communication performed in each step of the algorithms is between adjacent processors. 
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